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Abstract. The nature of phonon dispersion relation anomalies of the IV–VI compounds in the
high-symmetry phase is analysed in the framework of the vibronic theory of ferroelectricity.
It is shown that the source of the phonon dispersion curve anomalies is the strong electron–
phonon interaction of pseudo-Jahn–Teller type. The phonon spectra of the high-symmetry phase
of PbTe are calculated for different temperatures. The calculated spectra are in agreement with
experimental data. It is shown that the significant temperature dependence of the soft mode in
IV–VI semiconductors is caused by the closeness of the lattice to structural instability.

1. Introduction

Notwithstanding noticeable advances in explaining the structural properties of binary IV–VI
compounds (MeCh, where Me= Ge, Sn, Pb and Ch= chalcogenes S, Se, Te), the theory of
the lattice dynamics of such substances is far from complete. These systems belong to the
ferroelectric materials which undergo transitions to the lower-symmetry phase with lowering
temperature [1]. The reason for the transition is the softening with lowering temperature
of the frequency of a ‘soft mode’ which becomes zero at the transition point and causes
a structural distortion. Most of the existing models [2, 3, 4] used for calculations of the
phonon spectra are of purely phenomenological character, leaving intact the closeness of
the compounds under consideration to the structural phase transitions. The model suggested
in [5] takes into account in a phenomenological way the closeness to the structural phase
transition but cannot explain neither the temperature dependence nor the microscopic origin
of the structural changes. Since the contribution of the interactions which lead to the phase
transition is connected with the symmetry of the structural instability [5] and the strength
of this contribution depends on the closeness to the transition temperature, the phonon
spectra of these compounds have to demonstrate the universal properties of the phonon
anomalies. Therefore the model for the lattice dynamics has to be constructed on the basis
of a microscopic theory which is valid for the description of the structural changes.

The common feature of the models which explain the structural properties of
ferroelectrics is the assumption that the phase with the higher symmetry is unstable at
zero temperature. The difference between these models is in the offered stabilization
mechanism which switches on with increasing temperature and stabilizes the lattice against
low-symmetry distortion. The first approach (see e.g. [6]) ascribes the stabilization factor to
the lattice anharmonicity. This approach successfully explains the temperature dependence
of the soft mode but cannot relate the changes of the vibrational spectrum to the symmetry
of the structural distortion. Another approach is the ‘polarization model’ (see e.g. [7])
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which explains the temperature dependence of the soft mode based on the assumption of
the anharmonic electronic polarizability. The main drawback of both models is their purely
phenomenological character which does not take into account the relation of the electronic
structure of the ferroelectric compounds to the structural instability. Therefore, fine effects,
connected e.g. with the influence of magnetic field on the transition temperature (see [8, 9]),
cannot be explained within the framework of these theories. Besides, it is difficult to explain
why the soft mode corresponds to long-wave vibrations in IV–VI compounds [10] but to
phonons with finite wave vector in other substances (e.g. K2SeO4 [11, 12]).

One of the most successful models put forward for the description of structural
instabilities of ferroelectric materials which is free from the aforementioned drawbacks
is the vibronic theory [13, 14, 15]. According to this theory the structural transition is
caused by the strong electron–vibrational pseudo-Jahn–Teller (PJT) interaction [16] in a
case when the electronic configuration contains almost degenerate electronic states. This
approach is justified both on the basis of microscopic models [17, 18] and on the results
of the first-principles total-energy calculations [19]. The symmetry of the phase transition
is defined within the framework of vibronic theory by the symmetry of the strongest mode
in the electron–lattice interaction. This interaction leads to the phonon softening and the
instability occurs when the frequency of the phonon mode reaches a zero value. This
approach appears to be successful also in the explanation of the properties of the mixed-
valence materials [20, 21], which also contain almost degenerate electronic configuration.
In spite of the quantitative explanation of the properties of the soft mode the vibronic model
has not been applied to the calculation of the influence of electron–vibrational interaction
on a phonon with a general wave vector. Therefore to calculate the whole phonon spectra
this theory has to be generalized to the case of an arbitrary phonon. Besides, it is still
a matter of discussion whether the explanation of the soft-mode temperature dependence
offered by vibronic theory [13, 14] is valid for IV–VI compounds [22], where the values
of semiconducting gaps exceed significantly the thermal energykTR corresponding to room
temperatureTR. Therefore, to prove the relevance of vibronic theory for ‘wide gap’ IV–VI
ferroelectrics, one has to find a mechanism explaining the strong temperature dependence
of the phonon spectra near the structural instability.

It has already been shown in [23] that the phonon spectra of the typical IV–VI
compounds PbTe and PbS at room temperature can be successfully fitted within the
framework of the model which puts into correspondence the phenomenological constants
of the lattice dynamics model and the microscopic parameters of the vibronic approach.
However, this model is inappropriate for the analysis of the temperature dependence
of the phonon dispersion anomalies. Besides, since the model [23] is developed for
zero temperature, the effective phenomenological constants, used for the fit of the room-
temperature data, cannot be expressed in terms of the microscopic parameters of the
vibronic Hamiltonian. Therefore, the method used in [23] can be considered as a
semiphenomenological approach and the microscopic parameters obtained in [23] can be
treated as the effective ones.

In this paper we apply the vibronic theory of ferroelectrics to obtain the microscopic
description of the phonon anomalies of IV–VI compounds phonon spectra and analyse
their temperature dependence in the high-symmetry phase. As an example the vibrational
spectrum of PbTe, which is a typical representative of IV–VI compounds, is analysed.
Although the following calculations are adapted to the specific case of IV–VI compounds,
some peculiarities of the proposed model might be also valid for other segnetoelectrics
(e.g. K2SeO4, KTaO3 [11, 12, 24]). In the second section we calculate the electron–ion free
energy of a cluster of a IV–VI compound which then is applied to the calculation of the



Phonon dispersion anomalies of IV–VI compounds 5563

influence of the electronic system on the phonon frequencies in section 3. The complete
model used for calculation of the phonon spectrum is specified in section 4. The results of
calculation of the room-temperature phonon spectra of the typical IV–VI compound PbTe
are presented in section 5. The temperature dependence of the phonon anomalies is analysed
and discussed in sections 6 and 7. Some conclusions are presented in section 8.

2. Free energy of the cluster

Using the standard approach [14] let us consider the cluster ChMe6 which in accordance
with the band structure of the IV–VI compounds, contains six electrons distributed among
p-orbitals of chalcogene

{
pCh

0,x, pCh
0,y, pCh

0,z

}
and metal

{
pMe
%i ,x
, pMe

%i ,y
pMe
%i ,z

}
ions. Here%i denote

positions of Me ions in the cluster

%±x = [±1, 0, 0] %±y = [0,±1, 0] %±z = [0, 0,±1].

To simulate the electronic structure of narrow-band IV–VI semiconductors we assume that
the energies of chalcogene and metal orbitals are

ECh = −1/2 EMe = 1/2
respectively, where1 is the parameter describing the effective width of the gap in the
electronic spectrum.

To calculate the potential energy, we expand the electron–ionV (r,Q) potential in
distortions

{
Q0,γ

}
of the cluster high-symmetry (Q = 0) configuration up to the third

power. DistortionQ0
γ transforms according to the rowγ of the0 irreducible representation

of the point group of the crystal. The potential energy of the cluster is the sum of the
conventional ion–ion term:

U(Q) =
∑
0

F (0)0
∑
γ

Q2
0,γ

(with bare force constantsF (0)0 ) and a contribution from theQ-dependent energy of the
electronic subsystem:

1V (r,Q) =
∑
0γ

V0,γ (r)Q0,γ +
∑
0γ

∑
0′γ ′

W0,γ ;0′,γ ′(r)Q0,γQ0′,γ ′

+
∑
0γ

∑
0′γ ′

∑
0′′γ ′′

ξ0,γ ;0′,γ ′;0′′,γ ′′(r)Q0,γQ0′,γ ′Q0′′,γ ′′ . (1)

This term is represented in IV–VI compounds mainly by dipolar and shear symmetry [5].
For the dipolar contribution (QD,γ ,D = 0−15, γ = x, y, z) the expansion ofV (r,Q) can

be reduced to the form

1V (r,Q) =
∑
γ

V (r)QD,γ +
∑
γ

W(r)Q2
D,γ +

∑
γ

ξ(r)Q3
D,γ . (2)

We take into account only the strongest contributions to the electron–lattice interaction,
which are due to distortion of theσγ -coupling caused by the displacementQD,γ along the
axis with the same indexγ . This displacement mixes three pγ orbitals, of which one,ψCh

γ ,
belongs to the chalcogene and the other two,ψMe

ρ=±γ , are placed on two metal ions, which
are situated along the direction with the same indexγ (ρ = ±γ ). Since displacements do
not mix the orbitals with different indexesγ , the eigenvalue problem can be factorized into
three independent equations, each having the form∣∣∣∣∣U(Q)+1/2− ε T+ 0

T+ U(Q)−1/2− ε T−
0 T− U(Q)+1/2− ε

∣∣∣∣∣ = 0 (3)
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T± = ±VQD,γ +WQ2
D,γ ± ξQ3

D,γ . (4)

HereV , W and ξ are the matrix elements of potentialsV (r), W(r) and ξ(r) respectively
between the chalcogene and metal wave functions connected byσ -coupling. The
eigenvalues of (3) are

ε1,2 = U(Q)± 1
2

[
12+ 8Q2

D,γ (V
2+ W̃ 2Q2

,Dγ )
]1/2

ε3 = U(Q)+1/2
where

W̃ =
√

2V ξ +W 2. (5)

It is seen that expansion of the dipolar electron–lattice potential up to the third order (2)
leads to the renormalization (5) of the coupling constantW due to a contribution proportional
to V ξ which is connected with the joint action of linear and cubic terms of expansion (2).
This contribution was neglected in the semiphenomenological approach [23] but has to be
accounted for in the microscopic treatment.

It was shown in [23] that for large enough vibronic interaction the high-symmetry
configuration can be unstable at zero temperature and the minimum of the electron–lattice
system energy corresponds to the distorted cluster with equal values of

∣∣QD,γ

∣∣∣∣QD,γ

∣∣ ≡ Q (γ = x, y, z). (6)

These configurations are equivalent to displacement of two fcc sublattices relative to each
other along e.g. theτ = [111] direction and, therefore, describe the dipolar distortion (see
e.g. [19]).

The frozen-in dipolar shift induces the rhombohedral (R) or orthorhombic (O) unit cell
distortion [17]. Both R- and O-distortions can be described as the joint action of the three
shear modesQS,β (S = 0+25; β = xy, xz, yz) [5]. Since the shear distortions appear only
in response to the dipolar shiftτ [17, 5], it is natural to interpret the0+25 mode contribution
as the second-order shear-dipolar (SD) terms of expansion (1). If we take into account that
the energy relaxation in response to the dipolar shift along e.g. thex-direction appears only
due to thexy- and xz-shear distortions, we arrive at the following expression for the SD
contribution:

1VSD(r,Q) = �(r)
[
QD,x

(
QS,xy +QS,xz

)
+QD,y

(
QS,yx +QS,yz

)+QD,z

(
QS,zy +QS,zx

)]
(7)

where the SD coupling parameter

�(r) = �0−15,γ ;0+25,β
(r) ≡ ∂2V (r,Q)/∂QD,γ ∂QS,β γ = x, y, z. (8)

Hereβ = γ γ ′; γ ′ 6= γ .
In order to investigate the instability against the shear mode with a bare frequencyωS ,

we consider the frozen-in dipolarQτ=[111] displacement and take into account only the the
influence of distortions onσ -coupling between the chalcogene and metal ions. The Me ions
tend to relax the distortions ofσ -coupling bonds. Taking into account that in the case of
e.g.Qτ=[111] dipolar displacement three Me ions (ρ = x, y, z) are near neighbours and three
others (ρ = −x,−y,−z) are the next-nearest neighbours one can factorize the eigenvalue
problem into three independent equations. For example, forγ = x∣∣∣∣∣ U(Q)+ A− ε 2�QD,x

(
QS,xy +QS,xz

)
0

2�QD,x

(
QS,xy +QS,xz

)
U(Q)− A− ε 0

0 0 U(Q)+1/2− ε

∣∣∣∣∣ = 0 (9)
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A = 1
2

[
12+ 8Q2

D,x(V
2+ W̃ 2Q2

D,x)
]1/2

where� is equal to half of the matrix element of SD coupling potential�(r) between
the chalcogene and three near-neighbour metal wave functions. The eigenvalues of three
determinants (9) forγ = x, y, z are

ε
γ

1,2 = U(Q)± 1
2

{
12+ 8Q2

D,γ (V
2+ W̃ 2Q2

D,γ )+ 4�2
[
QD,γ (QS,βγ +QS,β ′γ )

]2}1/2
(10)

ε
γ

3 = U(Q)+1/2.
Hereγ = x, y, z, βx = xy, β ′x = xz; βy = yx, β ′y = yz; βz = zy, β ′z = zx.

It was shown in [23] that for large enough PJT parameters the cluster at zero temperature
can be unstable against the shear modes and the symmetry of distortions corresponds to the
R- and O-transformations [5]:∣∣QS,xy

∣∣ = ∣∣QS,xz

∣∣ = ∣∣QS,yz

∣∣ . (11)

Therefore the offered scheme of the electron–ion interaction gives a correct description of
the symmetry of the structural instability.

Neglecting the terms which are independent of the distortionsQ one obtains the
following expression for the free energy of the cluster:

F(Q) = U(Q)+ 2
∑
γ

Fγ (Q)

Fγ (Q) = −kT
3∑
n=1

ln

(
1+ exp

(
− ε

γ
n

kT

))
.

(12)

Here k is the Boltzmann constant,T is the temperature andεγn are the eigenvalues (10).
The factor of 2 in (12) is due to spin summation. The expression forFγ (Q) takes the form

Fγ (Q) = −kT
[

ln 2

(
1+ cosh

×
{
12+ 8(V 2+ W̃ 2Q2

D,γ )Q
2
D,γ + 4�2

[
QD,γ (QS,βγ +QS,β ′γ )

]2}1/2

2kT

)]
.

Since we restrict ourselves to the description of the lattice dynamics in the high-
symmetry phase where the minimum energy of the system corresponds to zero displacements{
Q0,γ

}
, one can expand the free energy in small distortions provided this approximation

does not change the symmetry properties of the structural instability (6, 11). It was shown
[23] that the approximate potential obtained by expansion in small distortions results in the
same structural transition (6, 11) and, therefore, retains the symmetry properties of the exact
one.

The expansion of the free energy up to the fourth order gives

Fγ ≈ U(Q)−Khar (T )Q2
D,γ −KDanhar (T )Q4

D,γ −KSDanhar (T )Q2
D,γ

(
QS,βγ +QS,β ′γ

)2
(13)

where the electronic contribution to the lattice energy can be represented as the sum of
harmonic and anharmonic terms with the temperature dependent coefficients

Khar (T ) =
(
2V 2/1

)
tanh(α/2) (14)

KDanhar (T ) = (2/1) tanh(α/2)
[
W̃ 2− (2V 41)

(
1− α

sinhα

)]
(15)

KSDanhar (T ) =
(
�2/1

)
tanh(α/2) (16)

α = 1/2kT .
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The expressions (13)–(16) for the expansion of the free energy coincide forT = 0 with
equations (3)–(5) of [23] if one substitutes the matrix elementW for the effective onẽW (5).

3. Vibronic contribution to the interionic potential and lattice dynamics

To calculate the lattice dynamics in the cubic phase, it is sufficient to consider the case of
the stable high-symmetry configuration (Q = 0). Therefore we expand the cluster energy
in the small distortionsQ of the equilibrium state up to the fourth order. Then the potential
energy of the cluster is given by the sum of the harmonic terms

Uc(Q) = (ω2
0/2−Khar (T )

)∑
γ

Q2
D,γ (17)

where the PJT interaction results in softening of the phonon frequenciesω0, and anharmonic
contributions

UappD (QD) = −KDanhar (T )
∑
γ

Q4
D,γ (18)

UappSD (QS) = −KSDanhar (T )
[
Q2
D,x

(
QS,xy +QS,xz

)2

+Q2
D,y

(
QS,yx +QS,yz

)2+Q2
D,z

(
QS,zy +QS,zx

)2
]
. (19)

To consider the lattice dynamics one should generalize the cluster approach to the
case of longitudinal and transverse phonon modes with an arbitrary wave vectorq. Finite
wave vector can be taken into account by the substitution of the distortionsQ for the
projection operators̃Q which correspond to the projection of the phonon modes on the
cluster distortions with the definite point symmetries (see e.g. [25]). According to [25]
one has to introduce different interaction constantsλlong andλtr for distortions which are
connected with the the ionic displacement parallel and perpendicular to the wave vectorq
respectively. It was shown in [23] that in this case the dipolar distortion can be effectively
decoupled into longitudinal̃Qlong

D,γ and transversal̃Qtr
D,γ projection operators

Q̃D,γ = Q̃long

D,γ + θQ̃tr
D,γ

where

θ = λtr/λlong.
The projections of the phonon modes on the dipolar (e.g. forγ = x)

Q̃
long

D,x = uCh0x − 1
2

(
uMe%1x + uMe%−1x

)
Q̃tr
D,x = uCh0x − 1

4

(
uMe%2x + uMe%−2x + uMe%3x + uMe%−3x

)
and shear (e.g. forβ = xy)

Q̃S,xy = 1
2

(
uMe%1y − uMe%−1y + uMe%2x − uMe%−2x

)
irreducible representations of the point group can be expressed in terms of the ionic
displacementsu. Here uMe%±jγ

is the displacement of ion Mej along the γ direction
(j = ±1,±2,±3 denote the Me ions in [±1, 0, 0], [0,±1, 0], [0, 0,±1] positions).

It is clear that the quadratic contributions (17) to the potential energy can be taken into
account in terms of the temperature dependent renormalization of the phenomenological
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parameters of the standard models. The anharmonic contribution (m is the unit cell index)
is the sum of dipolar and shear-dipolar terms

εPJT (Q) = −KDanhar (T )
∑
mγ

Q̃4
D,γ (m)− KSDanhar (T )

×
∑

m

{
Q̃2
D,x(m)

[
Q̃S,xy(m)+ Q̃S,xz(m)

]2+ Q̃2
D,y(m)

[
Q̃S,yx(m)

+Q̃S,yz(m)
]2+ Q̃2

D,z(m)
[
Q̃S,zy(m)+ Q̃S,zx(m)

]2}
. (20)

Expression (20) is equivalent to (6) of [23] forT = 0 in temperature-dependent coefficients
KD,SDanhar (T ).

4. Model

To consider the lattice dynamics, we use the conventional shell model [2, 3]

M̂ω2Û = (R̂+ ẐĈẐ)Û+ (T̂ + ẐĈŶ)Ŵ

m̂ω2Ŵ = (T̂ ∗ + ŶĈẐ)Û+ (L̂+ ŶĈŶ)Ŵ
(21)

L̂αβ(tt ′) = Ŝαβ + δαβδtt ′
[
kt +

(
T̂αα(tt)

)
−
(
Ŝαα(tt)

)]
. (22)

HereÛ is the matrix of the displacements of the cores with masses and charges defined by
matricesM̂ and Ẑ, respectively.Ŵ is the matrix of the shell displacements with respect to
the atomic core. The matriceŝm and Ŷ define the shell masses and charges respectively.
R̂, T̂ , Ŝ are the matrices of short-range interaction: core–core, core–shell and shell–shell
respectively;Ĉ is the Coulomb matrix;k is the elastic constant of the interionic core-shell
interaction;t is the sublattice index.

To treat the harmonic part of the potential energy, we use the model proposed in [5].
This model takes into account the interactions specific for the segnetoelectric compounds
(i.e. the long-range non-coulombic interaction and stabilization of the lattice against the
shear distortions by the next-nearest neighbour coupling).

In conventional treatment the PJT effect is characterized by the interaction of the
electronic subsystem with displacements of the cores. However, it is known that the main
contribution to the polarizability of IV–VI compounds is provided by the dipole moments
of the electronic shells [5]. Thus, it is natural to use the model of the unconventional Jahn–
Teller (UJT) effect [26] where the shell deformations adopt the role which in conventional
Jahn–Teller systems is played by nuclear displacements. In order to treat the lattice dynamics
in the framework of the UJT model, we include the anharmonic interactions (20) in theŜ–Ŝ
coupling matrixŜ and, therefore, in thêW–Ŵ coupling matrixL̂ (see (22)).

For the sake of simplicity we treat the anharmonic contributions in the spirit of effective
mean field decoupling [23]. The idea of this approximation is to represent the fourth-
order term in distortions by the product of two quadratic multipliers and replace the ionic
displacements with the partial ones in the first factor. The partial displacements of an ion
belonging to the sublatticet of the unit cellm due to the phonon mode(q, ν) can be
expressed in terms of the polarization vectorsetq,ν :

u
q,ν
m,t = exp(iq ·Rm) e

t
q,ν/

√
Mt (23)

whereMt is the dimensionless ionic mass. The polarization vectors, in turn, can be obtained
as the solutions of equations (21) and (22) where the anharmonic contributions are neglected.
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The procedure of decoupling is equivalent at fixed temperatureT0 to that outlined in
[23], although in the formalism suggested here the decoupling coefficients are temperature
dependent due to temperature dependence of the anharmonic contribution (20).

This procedure gives the following expressions for dipolar

KDanhar (T0)Q̃
4
D,γ

({
um,t

}) ∣∣∣
q,ν
≈ 3D(T0)Q̃

2
D,γ

({
um,t

}) ∣∣Q̃D,γ

({
u
q,ν
m,t

})∣∣2 (24)

and shear-dipolar

KSDanhar (T0)Q̃
2
D,γ

({
um,t

})
Q̃S,β

({
um,t

})
Q̃S,β ′

({
um,t

}) ∣∣∣
q,ν

≈ 3SD(T0)
∣∣Q̃D,γ

({
u
q,ν
m,t

})∣∣2 Q̃S,β

({
um,t

})
Q̃S,β ′

({
um,t

})
(25)

anharmonic contributions. Here3D(T0) and3SD(T0) are the phenomenological parameters
for fixed temperatureT0. Thus, the suggested approximation leads to effective coupling
constants

3̃
q,ν
D,SD(T ) = 3D,SD(T )

∣∣Q̃D,γ

({
u
q,ν
m,t

})∣∣2 (26)

which depend on the phonon wave vectorq, branch indexν and temperature.
Since the UJT anharmonic contributions are treated as a part ofŜ–Ŝ or Ŵ–Ŵ

interactions, one has to use the partial displacement vectors of the shells for the evaluation of
effective parameters (26). Therefore we use the shell displacement vectorsŜ for evaluation
of the short-range shear-dipolar interaction. Since the shell polarizability is dominant in
the dipolar response of ferroelectrics [5], one can use the relative displacement vectors of a
shell with respect to the atomic corêW.

The model suggested accounts for specific features of the lattice dynamics of the
ferroelectric compounds which are connected with the closeness to the structural instability
and has significant advantages in the treatment of the IV–VI compound phonon spectra in
comparison with the purely phenomenological Cochran model [2, 3, 4]. In spite of more
than 15 phenomenological parameters which were involved in the fit procedure within
the standard Cochran model [2, 3], this model is unable to describe all types of anomaly
observed in phonon dispersion curves. Besides, the parameters obtained as the result of the
fit procedure, are incompatible with the related compounds PbTe and PbS.

On the other hand, within our approach the standard parameters of the conventional
shell model are almost equal for these two compounds (see [5]), and the only parameters
which significantly changed for different compounds are the constants which are connected
with structural instability [23]. There are parameters which can be defined from the fit to
the room-temperatureTR data: (i) dipolar (3D(TR)) constant; (ii) shear-dipolar (3SD(TR))
constant; (iii) ratioθ = λtr/λlong (we use the same value ofθ for dipolar and shear-dipolar
anharmonic terms).

5. Room-temperature spectrum

Since the experimental data on the phonon spectra of PbTe [2] for all branches along the
symmetry directions are available only for ambient temperature one should fit the model
parameters to the dispersion curves at this temperature. We used for the description of the
room-temperature phonon spectrum the constants which were obtained in [23].

To analyse the temperature dependence of the phonon spectrum of PbTe we reproduce
in figure 1 the results of theoretical fitting (full line) together with the experimental data for
room temperatureTR [23]. To compare the results of our approach with that of the standard
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Figure 1. Calculated PbTe phonon spectrum for room temperature (solid lines) and 4 K (dashed
lines) with the experimental data for room temperature.

ones one can note that the description of TO(q ∼ 0) anomalies is much better than the
results of the models applied in [2, 3]. The phenomenological parameters of conventional
shell model are close to those obtained in [5]. The values of the specific for PJT coupling
parameters are3D(TR) = 2.87

(
e2/2V

)
, 3SD(TR) = 11.3

(
e2/2V

)
, θ = 1.43 (V is the

volume of the elementary cell ande is the charge of the electron). The room-temperature
phonon spectrum of another IV–VI compound PbS can also be reproduced theoretically
with values of the phenomenological constants which are close to those of PbS [23].

One of the most interesting features of the suggested approach is that the LO(q ∼ 0)
anomalies are also reproduced. These anomalies were explained previously in [2] by
the interaction of the optic mode with the free carriers induced by imperfections. This
explanation seems rather doubtful due to the absence of similar anomalies in other classes
of compounds with imperfect lattices. In our approach both LO(q ∼ 0) and TO(q ∼ 0)
anomalies can be ascribed to the dipolar PJT interaction specific for IV–VI compounds.
These anomalies disappear for a zero value of parameter3D.

The shear-dipolar coupling leads to the anomalies of TO[100] and TO[110] branches
(see [23]). These anomalies cannot be reproduced without inclusion of the shear-dipolar
coupling specific for the rhombohedral and orthorhombic distortions in the models (see e.g.
results of [2, 3]).

6. Model for temperature dependence

To consider the temperature dependence of lattice dynamics one has to consider the
temperature dependence of harmonic (14) and anharmonic (15) contributions to the shell–



5570 O B Maksimenko and A S Mishchenko

shell interaction.
To reduce the number of model phenomenological parameters we assume that the relative

changes of all shell–shell force constants with temperature can be described by the same
universal functionKhar (T ) (see (14)) which depends only on the statistical distribution
of electrons on the energy levels involved in the PJT interaction (14). Introducing the
parameter (see e.g. (14))

κ = 2V 2/1 (27)

describing the strength of the renormalization of the bare shell–shell force constantsF (0)SS ,
one can determine the temperature dependence of the force constantsFSS(T ) by the relation(

FSS(T )− F (0)SS
)/
F (0)SS = −κ tanh(1/4kT ).

The bare value of the force constantF (0)SS is not known but can be easily derived
from the values of the parametersFSS(TR). These parameters were determined by the
fit of the solutions of the shell model equations (21) and (22), including the additional
contribution (17)–(19), to the room-temperatureTR data in [23]. Under the condition
(FSS(T ) − FSS(TR))/FSS(TR) � 1, which is valid for the specified set of parameters
(see below), force constants can be expressed in terms of constantsFSS(TR) and parameter
κ found in the fit to the room-temperature experimental data:

FSS(T ) = FSS(TR)
{
1+ κ [tanh(1/4kTR)− tanh(1/4kT )

]}
. (28)

Since we neglect all anharmonic contributions except those which arise due to PJT
interaction the temperature dependence of the anharmonic force constant3D,SD(T ) can be
expressed by

3D,SD(T ) = 3D,SD(TR)
[
K(T )/K(TR)

]
(29)

(here the constants3D,SD(TR) have been obtained by the fit to the room-temperature data
of the model (17–19, 21, 22)) where, e.g., for dipolar mode

K(T ) = tanh(α/2)
[
β + (α − sinhα) / sinhα

]
. (30)

Here we have introduced the parameter

β = W̃ 21/2V 4 (31)

describing the strength of the anharmonic PJT interaction.
The procedure of evaluation of the quantitiesκ and β, which define the temperature

dependence and are expressed (27, 31, 5) in terms of the parameters of the microscopic
Hamiltonian (1), is rather straightforward provided the room-temperature constantsFSS(TR)
and 3D,SD(TR) are determined and the value of the gap in the electronic spectrum1

is known. The values of parameters of the microscopic Hamiltonian (1) are not known
within the framework of our treatment. Nevertheless, one can unambiguously determine
the constantsκ and β provided the frequencies of the TO[q = 0] mode are known at
least for two temperaturesT1,2 6= TR. Then, the relevance of the model can be checked
by comparison of the phonon spectra for all values of wave vectors in the high symmetry
direction with experimental data in wide temperature range.

7. Discussion of the temperature dependence of the phonon spectrum

The models which postulate that stabilization of the high-symmetry phase occurs due
to anharmonic contribution to the phonon frequencies ¯hωph (see e.g. [27]) successfully
explain the temperature dependence of the soft mode because the characteristic temperatures
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Figure 2. The calculated squares of TO[q = 0] (full line) and TO[q = 2π/a(0.1, 0.1, 0.1)]
(dashed line) frequencies in comparison with experimental data [28] (× and+ respectively).

Tph ∼ h̄ωph/k are comparable to the room temperatureTR. The function tanh
(
h̄ωph/2kT

)
entering the equations of the anharmonic models is sensitive to the temperature variations
in the range 0 K< T < 300 K since 2kTR ≈ h̄ωph ≈ 100 K–300 K. The drawback of these
models is that the simple explanation of the soft-mode temperature dependence cannot be
connected either to the electronic or to the structural properties of the system.

On the other hand the models which are based on the vibronic interaction contain
the ratio of the temperature and the electronic gap1. Therefore, in the case of IV–VI
compounds, one has to explain how the sharp temperature (0 K< T < 300 K) dependence
of the soft-mode frequency can be consistent with rather ‘wide’ (1 ≈ 1000–3000 K) gaps in
the electronic spectrum. It is clear that, unlike the case of models which involve the lattice
anharmonicity as a source of structural instability and where the changes of characteristic
temperature dependent factors is noticeable, the variations of the functions (28) and (29)
does not exceed a few per cent.

To avoid this difficulty one can suggest that there is an ionic polarizability that is
temperature dependent instead of ion–ion interaction constants [7]. In some sense the
approach offered here is similar to the method of [7] since in our model the temperature
dependent interaction is included in the shell–shell dynamical matrix. Therefore, the
treatment offered here leads to thetemperature dependent polarizability. It is clear that small
variations with temperature of ion–ion force constants cannot produce significant changes
of phonon frequencies. But even small changes of the shell–shell interactions can produce
significant phonon renormalization provided the electronic polarizability, as in the case of
IV–VI compounds, is high [5]. Moreover, inclusion of temperature dependent factors in the
shell–shell dynamic matrix can give a natural explanation of the experimentally observed
[28] sharp temperature dependence of transverse optic (TO) phonons which coexists with the
weak temperature dependence of longitudinal optic (LO) branches. In compounds with large
LO[q = 0]–TO[q = 0] splitting, which is equivalent to the high electronic polarizability,
the LO mode is stabilized by long-range Coulomb forces whereas the TO mode is extremely
sensitive to even small variations of shell–shell force constants.

To compare the calculations with experimental data we used the model parameters which
were obtained from the fit [23] to the room-temperature experimental data and calculated
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Figure 3. Theoretical and experimental frequencies of TO branches of PbTe for room
temperature (dashed line and squares); 80 K (dotted and crosses) and 4 K (full line and
diamonds). Experimental points for 293 K and 4 K were taken from [2] and [31] respectively.
Experimental data for 80 K were obtained as the result of the procedure based on the re-scaling
of the measurements of temperature dependence of Pb0.82Sn0.18Te phonon branches to the PbTe
lattice [32].

their temperature dependence according to relations (28)–(30). The value of the electronic
gap1 = 0.25 eV was taken from [29]. The values of the parametersκ = 0.2 andβ = 0.08
were obtained from the fit to the frequencies of the TO[q = 0] mode atTR = 300 K,
T1 = 80 K andT2 = 4 K.

To check up whether our model is able to reproduce the temperature dependence of the
soft mode we have calculated and compared with the experimental data [28] the temperature
dependence of TO[q = 0] and TO[q = 2π/a(0.1, 0.1, 0.1)] phonon frequencies (see
figure 2). Rather good agreement confirms that the chosen values ofκ andβ reproduces
the temperature dependence of the soft mode in the whole temperature range. Model
calculations also reproduce experimentally observed independence of temperature of LO
branches ∣∣ω2

LO[q=0](4 K)− ω2
LO[q=0](300 K)

∣∣ /ω2
LO[q=0](4 K) ≈ 0.03

in the temperature range where renormalization of TO phonons is significant∣∣ω2
TO[q=0](4 K)− ω2

TO[q=0](300 K)
∣∣ /ω2

TO[q=0](4 K) ≈ 2.78.
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Moreover, TO[q ≈ 0] phonons are the only part of the phonon spectra which, in accordance
with the experiment, renormalizes significantly as the temperature decreases (see the dashed
line in figure 1). The calculated temperature dependence of TO phonon branches in
comparison with experimental data is presented in figure 3.

One of the most crucial differences between the ‘lattice anharmonicity’ and PJT models
is the scale of the force constant renormalization which is necessary to drive a system into
a structural instability. The deviation of the force constant from its room-temperature value
is of the order of the bare constant in the former approach whereas it does not exceed a few
per cent in the latter one. Therefore, the PJT model implies that even at room temperature
the lattice is barely stable. Indeed the experimental data and theoretical considerations are in
favour of this assumption. The experimental evidence of the closeness to the instability [30]
is e.g. extremely high sensitivity of Pb1−xSnxTe properties with respect to the composition
and pressure. Theoretical considerations (e.g. model treatment [5, 17, 18] and theab initio
[19] approach) also support the conclusion that IV–VI compounds are close to the structural
instability even at ambient temperature.

8. Conclusions

In conclusion, it was shown that the phonon spectrum of the IV–VI compounds and its
temperature dependence can be explained within the framework of the pseudo-Jahn–Teller
model in spite of the comparably wide gap in the electronic spectrum. Although the
electronic gap, which is fairly wide in comparison with room temperature, leads to a small
renormalization of the force constants, the unconventional nature of the pseudo-Jahn–Teller
effect, when the interaction is connected rather with the polarization of electronic shells
than with the nuclei displacements, results in significant soft-mode temperature dependence.
The model presented is able to describe the temperature dependence of the whole phonon
spectrum. The quantitative agreement with experiment indicates that IV–VI compounds are
close to structural instability even at room temperature.
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